Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114.114
Filtrar
1.
BMC Plant Biol ; 24(1): 281, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614965

RESUMO

BACKGROUND: The presence of oxygen in the growth medium is absolutely essential for root development and the overall metabolic processes of plants. When plants do not have an adequate oxygen supply for respiration, they can experience a condition known as hypoxia. In order to investigate the impact of different nitrogen forms and varying oxygen levels in nutrient solutions on the growth, photosynthesis, and chlorophyll fluorescence parameters of bell pepper plants, a comprehensive study was conducted. The experiment was designed as a factorial experiment, considering two main factors: nitrogen forms (calcium nitrate and ammonium sulfate) with a fixed nitrogen concentration of 5 mM, and the oxygen levels of the nutrient solutions (ranging from 1.8 ± 0.2 to 5.3 ± 0.2 mg. L-1). RESULTS: The study examined the effects of nitrogen (NH4+ and NO3-) application on various parameters of vegetative growth. The results demonstrated that the use of ammonium (NH4+) led to a reduction in the most measured parameters, including the fresh and dry mass of both the root and shoot, at low O2 concentrations of 1.8 ± 0.2; 2.6 ± 0.2 and 3.8 ± 0.2 mg. L-1. However, an interesting observation was made regarding the impact of oxygen levels on root growth in plants grown with nitrate (NO3-). Specifically, the highest levels of oxygen significantly increased root growth in NO3--fed plants. Additionally, the application of NH4+ resulted in an increase in chlorophyll concentration in the leaves, particularly when combined with high oxygen levels in the nutrient solution. On the other hand, leaves of plants fed with NO3- exhibited higher photosynthetic rate (A), intrinsic water use efficiency (iWUE), and instantaneous carboxylation efficiency (A/Ci) compared to those fed with NH4+. Furthermore, it was found that NO3--fed plants displayed the highest instantaneous carboxylation efficiency at oxygen levels of 3.8 and 5.3 mg. L-1, while the lowest efficiency was observed at oxygen levels of 1.8 and 2.6 mg. L-1. In contrast, NH4+-grown plants exhibited a higher maximal quantum yield of PSII photochemistry (Fv/Fm), as well as increased variable fluorescence (Fv) and maximum fluorescence (Fm), compared to NO3--grown plants. Interestingly, the NO3--fed plants showed an increase in Fv/Fm, Fv, and Fm with the elevation of oxygen concentration in the nutrient solution up to 5.3 mg. L-1. CONCLUSION: This study showed that, the growth and photosynthesis parameters in bell pepper plants are sensitive to oxygen stress in floating hydroponic culture. Therefore, the oxygen level in the nutrient solution must not be lower than 3.8 and 5.3 mg. L-1 in NH4+ and NO3- -supplied culture media or nutrient solutions, respectively.


Assuntos
Nutrientes , Oxigênio , Hidroponia , Clorofila , Meios de Cultura , Nitrogênio
2.
Food Res Int ; 184: 114252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609230

RESUMO

Leafy green surface microbiology studies often experience significant variations in results due to the heterogeneous nature of leaf surfaces. To provide a precise and controllable substitute, we microfabricated double-sided artificial leafy green phylloplanes using polydimethylsiloxane (PDMS) with a vinyl-terminated polyethylene glycol chain-based hydrophobicity modifier (PDMS-PEG) to modify PDMS hydrophobicity. We further tested the properties and applications of these artificial leaves, by examining the function of epicuticular wax, growth and survival of E. coli O157:H7 87-23 on the surface, and removal of attached E. coli cells via sanitation. The double-sided PDMS-PDMS-PEG leaves well-replicated their natural counterparts in macroscopic and microscopic structure, hydrophobicity, and E. coli O157:H7 87-23 attachment. After depositing natural epicuticular wax onto artificial leaves, the leaf surface wetting ability decreased, while E. coli O157:H7 87-23 surface retention increased. The artificial leaves supplied with lettuce lysate or bacterial growth media supported E. coli O157:H7 87-23 growth and survival similarly to those on natural leaves. In the sanitation test, the artificial lettuce leaves also displayed patterns similar to those of natural leaves regarding sanitizer efficiency. Overall, this study showcased the microfabrication and applications of double-sided PDMS-PDMS-PEG leaves as a replicable and controllable platform for future leafy green food safety studies.


Assuntos
Dimetilpolisiloxanos , Escherichia coli O157 , Meios de Cultura , Inocuidade dos Alimentos , Alface
3.
Braz Oral Res ; 38: e024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597544

RESUMO

This study aimed to identify and characterize the antimicrobial susceptibility profile of bacteria found in primary endodontic infections in the teeth of patients treated at the Dental Clinic of the University of Ribeirão Preto, São Paulo, Brazil. From September to December 2019, samples were obtained from 21 patients with primary endodontic infections. The collections were carried out in triplicate using paper cones placed close to the total length of the root canal. Bacterial isolation was performed in Brain Heart Infusion agar, Blood agar, and other selective culture media cultured at 37°C for up to 48 h under aerobiosis and microaerophilic conditions. The bacterial species were identified using the Vitek 2 automated system. The disk diffusion method on agar Müeller-Hinton was used to assess antimicrobial susceptibility with the recommended antimicrobials for each identified bacterial species. A total of 49 antibiotics were evaluated. Fifteen of the 21 samples collected showed bacterial growth, and 17 bacterial isolates were found. There were 10 different bacterial species identified: Enterococcus faecalis (four isolates), Streptococcus mitis/oralis (three isolates), Streptococcus anginosus (three isolates) being the most common, followed by Staphylococcus epidermidis, Enterococcus faecium, Streptococcus constellatus, Streptococcus alactolyticus, Enterobacter cloacae, Klebsiella variicola, and Providencia rettgeri (one isolate of each species). The analysis demonstrated significant susceptibility to most of the tested antibiotics. However, some Enterococcus isolates resisted the antibiotic's erythromycin, ciprofloxacin, and tetracycline. A Staphylococcus epidermidis isolate was characterized as multidrug-resistant. Five Streptococcus isolates were non-susceptible to all antibiotics tested.


Assuntos
Anti-Infecciosos , Enterococcus faecium , Humanos , Ágar , Testes de Sensibilidade Microbiana , Brasil , Antibacterianos/farmacologia , Meios de Cultura
4.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38569656

RESUMO

Diagnostic laboratories in Aotearoa, New Zealand (NZ) refer cultures from faecal samples positive for Shiga toxin genes to the national Enteric Reference Laboratory for isolation of Shiga toxin-producing Escherichia coli (STEC) for epidemiological typing. As there was variation in the culture media being referred, a panel of 75 clinical isolates of STEC, representing 28 different serotypes, was used to assess six commercially available media and provide guidance to clinical laboratories. Recommendations were subsequently tested for a 3-month period, where STEC isolations and confirmations were assessed by whole genome sequencing analysis against the culture media referred. CHROMagar™ STEC (CH-STEC; CHROMagar Microbiology, Paris, France) or CH-STEC plus cefixime-tellurite sorbitol MacConkey agar was confirmed inferior to CH-STEC plus blood agar with vancomycin, cefsulodin, and cefixime (BVCC). The former resulted in fewer STEC types (n = 18) being confirmed compared to those from a combination of CH-STEC and BVCC (n = 42). A significant (P < .05) association with an STEC's ability to grow on CH-STEC and the presence of the ter gene cluster, and eae was observed. Culturing screen positive STEC samples onto both CH-STEC and BVCC ensures a consistently higher recovery of STEC from all clinical samples in NZ than CH-STEC alone.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Cefixima , Ágar , Nova Zelândia , Meios de Cultura , Vancomicina , Cefsulodina , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética
5.
Food Microbiol ; 121: 104526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637088

RESUMO

Korean style kimchi contaminated with Shiga toxin-producing Escherichia coli (STEC) O157:H7 was the cause of an outbreak in Canada from December 2021 to January 2022. To determine if this STEC O157:H7 has greater potential for survival in kimchi than other STEC, the outbreak strain and six other STEC strains (O26:H11, O91:H21, O103:H2, O121:H19, and two O157:H7) were inoculated individually at 6 to 6.5 log CFU/g into commercially sourced kimchi and incubation at 4 °C. At intervals of seven days inoculated and control kimchi was plated onto MacConkey agar to enumerate lactose utilising bacteria. The colony counts were interpreted as enumerating the inoculated STEC, since no colonies were observed on MacConkey agar plated with uninoculated kimchi. Over eight weeks of incubation the pH was stable at 4.10 to 4.05 and the STEC strains declined by 0.7-1.0 log, with a median reduction of 0.9 log. The linear rate of reduction of kimchi outbreak STEC O157:H7 was -0.4 log per 30 days (Slope Uncertainty 0.05), which was not significantly different from the other O157 and nonO157 STEC strains (P = 0.091). These results indicate that the outbreak was not due to the presence of strain better adapted to survival in kimchi than other STEC, and that STEC can persist in refrigerated Korean style kimchi with a minimal decline over the shelf-life of the product.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Alimentos Fermentados , Escherichia coli Shiga Toxigênica , Ágar , Escherichia coli O157/genética , Escherichia coli Shiga Toxigênica/genética , Meios de Cultura , República da Coreia
6.
Sci Rep ; 14(1): 8380, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600175

RESUMO

Mesenchymal stem cells (MSCs) have demonstrated potential in treating livestock diseases that are unresponsive to conventional therapies. MSCs derived from goats, a valuable model for studying orthopaedic disorders in humans, offer insights into bone formation and regeneration. Adipose tissue-derived MSCs (ADSCs) are easily accessible and have a high capacity for expansion. Although the choice of culture media significantly influences the biological properties of MSCs, the optimal media for goat ADSCs (gADSCs) remains unclear. This study aimed to assess the effects of four commonly used culture media on gADSCs' culture characteristics, stem cell-specific immunophenotype, and differentiation. Results showed that MEM, DMEM/F12, and DMEM-LG were superior in maintaining cell morphology and culture parameters of gADSCs, such as cell adherence, metabolic activity, colony-forming potential, and population doubling. Conversely, DMEM-HG exhibited poor performance across all evaluated parameters. The gADSCs cultured in DMEM/F12 showed enhanced early proliferation and lower apoptosis. The cell surface marker distribution exhibited superior characteristics in gADSCs cultured in MEM and DMEM/F12. In contrast, the distribution was inferior in gADSCs cultured in DMEM-LG. DMEM/F12 and DMEM-LG culture media demonstrated a significantly higher potential for chondrogenic differentiation and DMEM-LG for osteogenic differentiation. In conclusion, DMEM/F12 is a suitable culture medium for propagating gADSCs as it effectively maintains cell morphology, growth parameters, proliferation and lower apoptosis while exhibiting desirable expression patterns of MSC-specific markers. These findings contribute to optimising culture conditions for gADSCs, enhancing their potential applications in disease treatment and regenerative medicine.


Assuntos
Cabras , Células-Tronco Mesenquimais , Humanos , Animais , Osteogênese , Diferenciação Celular , Meios de Cultura/metabolismo , Proliferação de Células , Células Cultivadas
7.
BMC Microbiol ; 24(1): 120, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582825

RESUMO

BACKGROUND: Chrysomycin A (CA) is a promising antibiotic for treatment of Gram-positive bacterial infections and cancers. In order to enhance CA yield, optimization of fermentation conditions and medium components was carried out on strain Streptomyces sp. 891-B6, an UV-induced mutant with improved CA titer compared with its wide-type marine strain 891. RESULTS: Using one-way experiment, the optimal fermentation conditions for CA production in 1-L shake flask were obtained as follows: 12 days of fermentation time, 5 days of seed age, 5% of inoculum volume ratio, 200 mL of loading volume and 6.5 of initial pH. By response surface methodology, the optimal medium components determined as glucose (39.283 g/L), corn starch (20.662 g/L), soybean meal (15.480 g/L) and CaCO3 (2.000 g/L). CONCLUSION: Validation tests showed that the maximum yield of CA reached 1601.9 ± 56.7 mg/L, which was a 60% increase compared to the initial yield (952.3 ± 53.2 mg/L). These results provided an important basis for scale-up production of CA by strain 891-B6.


Assuntos
Streptomyces , Fermentação , Streptomyces/genética , Aminoglicosídeos , Antibacterianos , Meios de Cultura
8.
Fungal Biol ; 128(2): 1643-1656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575237

RESUMO

Microsclerotia (MS) are considered one of the most promising propagules for use as active ingredients in biopesticides due to their tolerance to abiotic factors and ability to produce infective conidia for the control of pests. Therefore, the objective of this research was to establish the conditions required to induce the formation of microsclerotia in Metarhizium robertsii Mt004 and to study its development process, tolerance to abiotic factors and insecticidal activity of MS-derived conidia. M. robertsii started to form hyphal aggregates after 2 days and looked more compact after 8 days. MS were mature and pigmented after 20 days. The final yield was 2.0 × 103 MS/mL and MS size varied between 356.9 and 1348.4 µm. Ultrastructure analysis revealed that mature MS contained only a few live cells embedded in an extracellular matrix. Mature MS were more tolerance to UV-B radiation, heat and storage trials than conidia from Solid State Fermentation. MS-derived conidia were as virulent as conidia against Diatraea saccharalis larvae. These results showed that MS are promising propagules for the development of more persistent and efficient biopesticides for harsh environmental conditions. Our findings provide a baseline for production and a better understanding of microsclerotia development in M. robertsii strains.


Assuntos
Inseticidas , Metarhizium , Inseticidas/farmacologia , Agentes de Controle Biológico , Meios de Cultura/química , Esporos Fúngicos , Controle Biológico de Vetores/métodos
9.
Fungal Biol ; 128(2): 1698-1704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575243

RESUMO

Peat-based casings have been used for button mushroom (Agaricus bisporus) cultivation for decades but there is environmental pressure to find sustainable alternatives. This work aimed to characterise the physicochemical properties of peat and peat-substituted casings and to determine their influence on mushroom cropping to enable alternatives to be identified. British milled peat and German wet-dug peat casings produced smaller mushrooms than Irish wet-dug peat casing although yield was unaffected. Substitution of milled or wet-dug peat casings with 25% v/v bark, green waste compost or spent mushroom casing, except Irish wet-dug peat casing with spent peat mushroom casing, caused reductions in mushroom yield and/or size. These poorer results of casings compared with Irish wet-dug peat casing corresponded with lower water retention volumes at matric potential (Ψm) -15 kPa but not after drainage from saturation or at -1 kPa. Air-filled porosity (17-22% v/v), compacted bulk density after drainage (670-800 g L-1) and electrical conductivity (0.30-0.54 mS cm-1) of casings were unrelated to their mushroom cropping performance. In-situ casing measurements with electronic tensiometers confirmed laboratory casing physical analysis: at the same casing Ψm, Irish wet-dug peat casing had a higher water content than German wet-dug peat casing and produced larger mushrooms for the same yield. Solid-state foam-based tensiometers were more robust than water-filled tensiometers but they did not detect the full decrease in casing Ψm during a flush of mushrooms. The results indicate that if sustainable materials are to replace wet-dug peat casing with the same mushroom yield and size quality performance, they should have equivalent water retention volumes at Ψm -15 kPa. Measurement of casing Ψm with electronic tensiometers to control mushroom crop irrigation should assist in this transition.


Assuntos
Agaricus , Solo/química , Meios de Cultura/química , Água
10.
PeerJ ; 12: e16995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426145

RESUMO

Background: Hermetia illucens (HI), commonly known as the black soldier fly, has been recognized for its prowess in resource utilization and environmental protection because of its ability to transform organic waste into animal feed for livestock, poultry, and aquaculture. However, the potential of the black soldier fly's high protein content for more than cheap feedstock is still largely unexplored. Methods: This study innovatively explores the potential of H. illucens larvae (HIL) protein as a peptone substitute for microbial culture media. Four commercial proteases (alkaline protease, trypsin, trypsase, and papain) were explored to hydrolyze the defatted HIL, and the experimental conditions were optimized via response surface methodology experimental design. The hydrolysate of the defatted HIL was subsequently vacuum freeze-dried and deployed as a growth medium for three bacterial strains (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) to determine the growth kinetics between the HIL peptone and commercial peptone. Results: The optimal conditions were 1.70% w/w complex enzyme (alkaline protease: trypsin at 1:1 ratio) at pH 7.0 and 54 °C for a duration of 4 h. Under these conditions, the hydrolysis of defatted HIL yielded 19.25% ±0.49%. A growth kinetic analysis showed no significant difference in growth parameters (µmax, Xmax, and λ) between the HIL peptone and commercial peptone, demonstrating that the HIL hydrolysate could serve as an effective, low-cost alternative to commercial peptone. This study introduces an innovative approach to HIL protein resource utilization, broadening its application beyond its current use in animal feed.


Assuntos
Dípteros , Peptonas , Animais , Tripsina , Hidrólise , Cinética , Larva , Meios de Cultura
11.
PLoS One ; 19(3): e0298262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547234

RESUMO

MCF7 cells have been used as an experimental model for breast cancer for decades. Typically, a culture medium is designed to supply cells with the nutrients essential for their continuous proliferation. Each medium has a specific nutritional composition. Therefore, cells cultured in different media may exhibit differences in their metabolism. However, only a few studies have investigated the effects of media on cells. In this study, we compared the effects of Dulbecco's modified Eagle medium (DMEM) and minimum essential medium alpha modification (αMEM) on MCF7 cells. The two media differentially affected the morphology, cell cycle, and proliferation of MCF7 cells, but had no effect on cell death. Replacement of DMEM with αMEM led to a decrease in ATP production and an increase in reactive oxygen species production, but did not affect the cell viability. RNA-sequencing and bioinformatic analyses revealed 721 significantly upregulated and 1247 downregulated genes in cells cultured in αMEM for 48 h compared with that in cells cultured in DMEM. The enriched gene ontology terms were related to mitosis and cell proliferation. Kyoto encyclopedia of genes and genomes analysis revealed cell cycle and DNA replication as the top two significant pathways. MCF7 cells were hypoxic when cultured in αMEM. These results show that the culture medium considerably affects cultured cells. Thus, the stability of the culture system in a study is very important to obtain reliable results.


Assuntos
Transcriptoma , Humanos , Células MCF-7 , Células Cultivadas , Proliferação de Células , Sobrevivência Celular , Meios de Cultura/farmacologia
12.
In Vitro Cell Dev Biol Anim ; 60(3): 300-306, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506940

RESUMO

The culture of preimplantation embryos in vitro is an important method for human and mouse reproductive technology. This study aims to investigate the influence of different conditions of culture media on the preimplantation stage of mouse embryos cultured in vitro, and monitor the post-implantation development of new mice after embryo transfer to surrogate females. We demonstrated here that mouse embryos cultured in vitro in fresh M16, KSOM, Global, and HTF embryo culture media from one cell to the blastocyst stage and the subsequent embryo transfer to surrogate females are able to proceed through post-implantation development and, after birth, develop into healthy mice. However, culture of embryos in differently aged media shows various (often unpredictable) results. To find the optimal storage conditions of culture media, we suggest that the freezing and long-term storage of these media at - 80°C will not influence the quality of the media. To test this hypothesis, we grew embryos from one cell to blastocysts in vitro in the selected media after thawing and subsequently transferring them to surrogate females. Embryo culture in these four media after thawing does not affect preimplantation and postnatal mouse development. Thus, we have shown that storage of embryo culture media at low temperature (- 80°C) does not impact the quality of the media, and subsequently, it can be used for the culture of embryos for the full preimplantation period, the same as in fresh media.


Assuntos
Técnicas de Cultura Embrionária , Transferência Embrionária , Feminino , Camundongos , Humanos , Animais , Meios de Cultura/farmacologia , Técnicas de Cultura Embrionária/métodos , Transferência Embrionária/métodos , Embrião de Mamíferos , Desenvolvimento Embrionário , Blastocisto
13.
Bioresour Technol ; 399: 130577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479624

RESUMO

This study aimed to enhance the production of mycelium biomass and exopolysaccharides (EPS) of Pleurotus ostreatus in submerged fermentation. Response Surface Methodology (RSM)sought to optimize culture conditions, whereas Artificial Neural Network (ANN)aimed to predict the mycelium biomass and EPS. After optimization of RSM model conditions, the maximum biomass (36.45 g/L) and EPS (6.72 g/L) were obtained at the optimum temperature of 22.9 °C, pH 5.6, and agitation of 138.9 rpm. Further, the Genetic Algorithm (GA) was employed to optimize the cultivation conditions in order to maximize the mycelium biomass and EPS production. The ANN model with an optimized network structure gave the coefficient of determination (R2) value of 0.99 and the least mean squared error of 1.9 for the validation set. In the end, a graphical user interface was developed to predict mycelium biomass and EPS production.


Assuntos
Pleurotus , Biomassa , Redes Neurais de Computação , Micélio , Fermentação , Meios de Cultura
14.
Bioresour Technol ; 398: 130511, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437963

RESUMO

The effect of thiamine (TA), ascorbic acid (AA), citric acid, and gallic acid (GA) on bacterial cellulose (BC) production by Komagataeibacter sucrofermentans, in synthetic (Hestrin and Schramm, HS) and natural substrates (industrial raisins finishing side stream extract, FSSE; orange juice, OJ; green tea extract, GTE), was investigated. The Response Surface Methodology was found reliable for BC yield prediction and optimization. Higher yields were achieved in the FSSE substrates, especially those supplemented with AA, TA, and GA (up to 19.4 g BC/L). The yield in the non-fortified substrates was 1.1-5.4 and 11.6-15.7 g/L, in HS and FSSE, respectively. The best yield in the natural non-fortified substrate FSSE-OJ-GTE (50-20-30 %), was 5.9 g/L. The porosity, crystallinity, and antioxidant properties of the produced BC films were affected by both the substrate and the drying method (freeze- or oven-drying). The natural substrates and the process wastewaters can be further exploited towards added value and sustainability. Take Home Message Sentence: Raisin and citrus side-streams can be efficiently combined for bacterial cellulose production, enhanced by other vitamin- and phenolic-rich substrates such as green tea.


Assuntos
Acetobacteraceae , Celulose , Vitaminas , Celulose/química , Rios , Vitamina A , Vitamina K , Compostos Orgânicos , Meios de Cultura , Chá , Extratos Vegetais
15.
J Vis Exp ; (205)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497647

RESUMO

Measuring bacterial colonization on Arabidopsis thaliana root is one of the most frequent experiments in plant-microbe interaction studies. A standardized method for measuring bacterial colonization in the rhizosphere is necessary to improve reproducibility. We first cultured sterile A.thaliana in hydroponic conditions and then inoculated the bacterial cells in the rhizosphere at a final concentration of OD600 of 0.01. At 2 days post-inoculation, the root tissue was harvested and washed three times in sterile water to remove the uncolonized bacterial cells. The roots were then weighed, and the bacterial cells colonized on the root were collected by vortex. The cell suspension was diluted in a gradient with a phosphate-buffered saline (PBS) buffer, followed by plating onto a Luria-Bertani (LB) agar medium. The plates were incubated at 37 °C for 10 h, and then, the single colonies on LB plates were counted and normalized to indicate the bacterial cells colonized on roots. This method is used to detect bacterial colonization in the rhizosphere in mono-interaction conditions, with good reproducibility.


Assuntos
Arabidopsis , Hidroponia , Reprodutibilidade dos Testes , Meios de Cultura , Interações Microbianas
16.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465948

RESUMO

This article presents a rapid yet robust protocol for isolating Campylobacter spp. from raw meats, specifically focusing on Campylobacter jejuni and Campylobacter coli. The protocol builds upon established methods, ensuring compatibility with the prevailing techniques employed by regulatory bodies such as the Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) in the USA, as well as the International Organization for Standardization (ISO) in Europe. Central to this protocol is collecting a rinsate, which is concentrated and resuspended in Bolton Broth media containing horse blood. This medium has been proven to facilitate the recovery of stressed Campylobacter cells and reduce the required enrichment duration by 50%. The enriched samples are then transferred onto nitrocellulose membranes on brucella plates. To improve the sensitivity and specificity of the method, 0.45 µm and 0.65 µm pore-size filter membranes were evaluated. Data revealed a 29-fold increase in cell recovery with the 0.65 µm pore-size filter compared to the 0.45 µm pore-size without impacting specificity. The highly motile characteristics of Campylobacter allow cells to actively move through the membrane filters towards the agar medium, which enables effective isolation of pure Campylobacter colonies. The protocol incorporates multiplex quantitative real-time polymerase chain reaction (mqPCR) assay to identify the isolates at the species level. This molecular technique offers a reliable and efficient means of species identification. Investigations conducted over the past twelve years involving retail meats have demonstrated the ability of this method to enhance recovery of Campylobacter from naturally contaminated meat samples compared to current reference methods. Furthermore, this protocol boasts reduced preparation and processing time. As a result, it presents a promising alternative for the efficient recovery of Campylobacter from meat. Moreover, this procedure can be seamlessly integrated with DNA-based methods, facilitating rapid screening of positive samples alongside comprehensive whole-genome sequencing analysis.


Assuntos
Campylobacter jejuni , Campylobacter , Animais , Cavalos , Galinhas , Microbiologia de Alimentos , Carne , Campylobacter/genética , Meios de Cultura
17.
J Agric Food Chem ; 72(11): 6064-6076, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38465450

RESUMO

The process of producing cell-cultured meat involves utilizing a significant amount of culture medium, including fetal bovine serum (FBS), which represents a considerable portion of production expense while also raising environmental and safety concerns. This study demonstrated that supplementation with Auxenochlorella pyrenoidosa protein extract (APE) under low-serum conditions substantially increased Carassius auratus muscle (CAM) cell proliferation and heightened the expression of Myf5 compared to the absence of APE. An integrated intracellular metabolomics and proteomics analysis revealed a total of 13 and 67 differentially expressed metabolites and proteins, respectively, after supplementation with APE in the medium containing 5%FBS, modulating specific metabolism and signaling pathways, which explained the application of APE for passage cell culture under low-serum conditions. Further analysis revealed that the bioactive factors in the APE were protein components. Moreover, CAM cells cultured in reconstructed serum-free media containing APE, l-ascorbic acid, insulin, transferrin, selenium, and ethanolamine exhibited significantly accelerated growth in a scale-up culture. These findings suggest a promising alternative to FBS for fish muscle cell culture that can help reduce production costs and environmental impact in the production of cultured meat.


Assuntos
Hominidae , Soroalbumina Bovina , Animais , Células Cultivadas , Meios de Cultura , Técnicas de Cultura de Células , Músculos
18.
Appl Microbiol Biotechnol ; 108(1): 262, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483568

RESUMO

The increasing demand for rare earth elements (REEs) has spurred interest in the development of recovery methods from aqueous waste streams. Acidophilic microalgae have gained attention for REE biosorption as they can withstand high concentrations of transition metals and do not require added organic carbon to grow, potentially allowing simultaneous sorption and self-replication of the sorbent. Here, we assessed the potential of Galdieria sulphuraria for REE biosorption under acidic, nutrient-replete conditions from solutions containing ≤ 15 ppm REEs. Sorption at pH 1.5-2.5 (the growth optimum of G. sulphuraria) was poor but improved up to 24-fold at pH 5.0 in phosphate-free conditions. Metabolic activity had a negative impact on REE sorption, additionally challenging the feasibility of REE biosorption under ideal growth conditions for acidophiles. We further examined the possibility of REE biosorption in the presence of phosphate for biomass growth at elevated pH (pH ≥ 2.5) by assessing aqueous La concentrations in various culture media. Three days after adding La into the media, dissolved La concentrations were up to three orders of magnitude higher than solubility predictions due to supersaturation, though LaPO4 precipitation occurred under all conditions when seed was added. We concluded that biosorption should occur separately from biomass growth to avoid REE phosphate precipitation. Furthermore, we demonstrated the importance of proper control experiments in biosorption studies to assess potential interactions between REEs and matrix ions such as phosphates. KEY POINTS: • REE biosorption with G. sulphuraria increases significantly when raising pH to 5 • Phosphate for biosorbent growth has to be supplied separately from biosorption • Biosorption studies have to assess potential matrix effects on REE behavior.


Assuntos
Metais Terras Raras , Microalgas , Microalgas/metabolismo , Fosfatos , Metais Terras Raras/metabolismo , Meios de Cultura , Concentração de Íons de Hidrogênio
19.
PLoS One ; 19(3): e0300042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536821

RESUMO

BACKGROUND: Mycobacterium tuberculosis culturing remains the gold standard for laboratory diagnosis of tuberculosis. Tuberculosis remains a great public health problem in developing countries like The Gambia, as most of the methods currently used for bacterial isolation are either time-consuming or costly. OBJECTIVE: To evaluate the Kudoh swab method in a West African setting in Gambia, with a particular focus on the method's performance when culturing Mycobacterium africanum West Africa 2 (MAF2) isolates. METHOD: 75 sputum samples were collected in the Greater Banjul Area and decontaminated in parallel with both the standard N-acetyl-L-Cysteine-NaOH (NALC-NaOH) and the Kudoh swab method in the TB diagnostics laboratory in the Medical Research Council Unit The Gambia between 30th December 2017 and 25th February 2018. These samples were subsequently cultured on standard Löwenstein-Jensen and Modified Ogawa media respectively and incubated at 37°C for mycobacterial growth. Spoligotyping was done to determine if the decontamination and culture methods compared could equally detect Mycobacterium tuberculosis, Mycobacterium africanum West Africa 1 and Mycobacterium africanum West Africa 2. RESULT: Among the 50 smear positives, 35 (70%) were culture-positive with Kudoh and 32 (64%) were culture positive with NALC-NaOH, whilst 7(28%) of the 25 smear negative samples were culture positive with both methods (Table 2). There was no significant difference in recovery between both methods (McNemar's test, p-value = 0.7003), suggesting that the overall positivity rate between the two methods is comparable. There were no differences in time-to-positivity or contamination rate between the methods. However, Kudoh yielded positive cultures that were negative on LJ and vice versa. All findings were irrespective of mycobacterial lineages. CONCLUSION: The Kudoh method has comparable sensitivity to the NALC-NaOH method for detecting Mycobacterium tuberculosis complex isolates. It is easy to perform and could be an add on option for mycobacterial culture in the field in The Gambia, since it requires less biosafety equipment.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Gâmbia , Hidróxido de Sódio , Técnicas Bacteriológicas/métodos , Escarro/microbiologia , Tuberculose/diagnóstico , Tuberculose/microbiologia , Meios de Cultura
20.
Food Res Int ; 182: 114064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519157

RESUMO

Bacillus subtilis spores are important food spoilage agents and are occasionally involved in food poisoning. In foods that are not processed with intense heat, such bacterial spores are controlled by a combination of different hurdles, such as refrigeration, acidification, and low water activity (aw), which inhibit or delay germination and/or growth. Sporulation temperature has long been regarded as a relevant factor for the assessment of germination in chemically defined media, but little is known about its impact on food preservation environments. In this study, we compared germination dynamics of B. subtilis spores produced at optimal temperature (37 °C) with others incubated at suboptimal (20 °C) and supraoptimal (43 °C) temperatures in a variety of nutrients (rich-growth medium, L-alanine, L-valine, and AGFK) under optimal conditions as well as under food-related stresses (low aw, pH, and temperature). Spores produced at 20 °C had a lower germination rate and efficiency than those incubated at 37 °C in all the nutrients, while those sporulated at 43 °C displayed a higher germination rate and/or efficiency in response to rich-growth medium and mostly to L-alanine and AGFK under optimal environmental conditions. However, differences in germination induced by changes in sporulation temperature decreased when spores were activated by heat, mainly due to the greater benefit of heat for spores produced at 20 °C and 37 °C than at 43 °C, especially in AGFK. Non-heat-activated spores produced at 43 °C still displayed superior germination fitness under certain stresses that had considerably impaired the germination of the other two populations, such as reduced temperature and aw. Moreover, they presented lower temperature and pH boundaries for the inhibition of germination in rich-growth medium, while requiring a higher NaCl concentration threshold compared to spores obtained at optimal and suboptimal temperature. Sporulation temperature is therefore a relevant source of variability in spore germination that should be taken into account for the accurate prediction of spore behaviour under variable food preservation conditions with the aim of improving food safety and stability.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Temperatura , Temperatura Alta , Meios de Cultura , Alanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...